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The prime-number sequence, viewed as the spectrum of eigenvalues of random
matrices, is found to be quasi-chaotic. Plots of histograms of prime-number
nearest-neighbor spacing D p at various values of total number of integers
indicate rough agreement with the Wigner distribution and illustrate level
repulsion. A global maximum of these curves is noted at D p 5 6. Numerical
work further implies that in any maximum integer sampling, no matter how
large, a finite number of nearest neighbor spacings do not occur. This quasi-
chaotic property of the prime-number sequence supports the conjecture that
a formula for the nth prime does not exist. A rule for missing spacings is
inferred according to which, as maximum number of integers 1 increases,
nearest neighbor vacancies corresponding to smaller 1 vanish and new, larger
value vacancies appear. In addition, early values of these histograms illustrate
a rough oscillatory behavior with periodicity d [ D p] . 6. A corollary to the
results implies that zeros of the Riemann zeta function likewise comprise a
quasi-chaotic sequence. Application of these findings to the resonant spectra
of excited nuclei is noted.

1. INTRODUCTION

Quantum chaos of a system may be described in terms of the theory

of Gaussian distributions of random matrices and the spectral statistics of

the spacing of eigenvalues of these matrices (Berry and Tabor, 1977;
Porter, 1965; Mehta, 1967; Reichl, 1992; Haake, 1990, Liboff and Seidman,

1993). In the formalism stemming from symmetries of the given system,

three classes of matrices emerge: real symmetric, Hermitian, and real

quaternion, which in turn may be diagonalized by orthogonal, unitary,
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and symplectic similarity transformations, respectively. Corresponding dis-

tributions of nearest neighbor eigenvalues carry the acronyms GOE, GUE,

and GSE. The first of these (Gaussian orthogonal ensemble) is also called

the Wigner±Dyson (Wigner, 1967; Dyson, 1962) or, simply, the Wigner

distribution. A histogram of nearest neighbor increments of eigenvalues

which roughly resembles any of these distributions reflects a nonintegrable

system, whereas a Poisson-like distribution is indicative of an integrable

system. Thus, for example, nearest neighbor increments of the energy

spectrum of the circular quantum billiard gives a Poisson-like histogram,

whereas the energy spectrum of chaotic billiards such as the stadium or

Sinai billiard give a Wigner-like histogram (McDonald and Kaufman,

1979; Bohigas et al., 1984). In the present work this formalism is applied

to the prime number sequence. As previously noted (e.g., Reichl, 1992,

Chapter 2; Haake, 1990, Chapter 4), these spectral statistics provide a

criterion for chaotic behavior. This interpretation is adopted in the present

work. We term the set of eigenvalues related to a chaotic system with

spectral properties such as described above a chaotic sequence. When

applied to the prime-number sequence it is found that there is rough

agreement with the Wigner distribution beyond the maximum of this

distribution, but that the Wigner distribution falls off more rapidly than

does the corresponding prime-number incremental histogram in the large-

incremental-number domain. Thus, although spectral properties of the

prime-number sequence exhibit level repulsion, this difference in the large-

incremental-number interval is taken to describe a quasi-chaotic sequence.

In a related study of quantum chaos of dynamical systems, analogies were

made between classical periods and prime numbers, and energy levels

and zeros of Riemann’ s zeta function (Berry, 1993).

Spectral densities of chaotic systems reflect level repulsion. Early

studies of nuclear resonances in U238 under neutron bombardment clearly

exhibit level repulsion related to the Wigner distribution (Gutzwiller, 1990,

Section 16.4). Studies addressing the application of prime numbers to

physics have suggested a relation between prime-number sequences and

the spectra of excited nuclei (Cipra, 1996). In this context, spectral densities

of resonance data of nuclei with mass numbers ranging from A 5 50 to

A 5 230 were compiled (Michell et al., 1991). It was observed that the

spectral resonance of lighter nuclei exhibit GOE chaotic behavior, whereas

heavier nuclei exhibit Poisson-like integrable behavior. Due to Euler’ s

formula relating the Riemann zeta function to primes, it is concluded that

zeros of these functions likewise comprise a quasi-chaotic sequence. Large-

order zeros of the zeta function have also been identified with spectra of

excited nuclei (Cipra, 1996).
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2. ANALYSIS

The probability P(s) ds for eigenvalue spacing in the interval (s, s 1
ds) related to a Gaussian distribution of random 2 3 2 matrices is given by the

distribution (Berry and Tabor, 1977; Porter, 1965; Mehta, 1967; Reichl, 1992)

P(s) 5 ) s ) b e 2 s2/8a2

a b 1 12(3 b 1 3)/2 G (( b 1 1)/2)
(1)

where the values b 5 1, 2, 4 correspond respectively, to the GOE, GUE,

and GSE cases, and a is a constant. Thus, the GOE distribution has the form

PO(s) } ) s ) exp( 2 s2/8a2) (2a)

the GUE distribution has the form

PU(s) } s2 exp( 2 s2/8a2) (2b)

and the GSE distribution has the form

PS(s) } s4 exp( 2 s2/8a2) (2c)

In the present work the sequence of prime numbers is viewed as the

spectrum of eigenvalues of random 2 3 2 matrices. A histogram of numbers
of primes N( D p) in spacings D p of adjacent prime-number values was made

from the first 50,000, 106, and 107 positive integers, respectively. In compiling

the best fit of P(s) to the given histogram, it was noted that the PS and PU

distributions rise too slowly at s 5 0+, and that the Wigner distribution gives

the best fit. This finding implies that the prime-number sequence relates to

real, symmetric matrices.

2.1. Distributions

The nature of the numerics in the present formulation is as follows. Let

1 denote the maximum integer in any run. For 1 À 1, it is found that the

general features of the histogram remain, namely, the peak is always at D p 5
6, this maximum grows with 1, as does the maximum value of D p, although

the related value of N( D p) is vanishingly small. The resulting distribution
corresponding to 1 5 50,000 is given by

P(s) 5
2

72
se 2 s2/72 (3a)

P(s) 5
300 3 72

2
P(s) (3b)
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where P(s) is normalized and is chosen with maximum at s 5 6, corresponding

to a 5 3 in (1). The renormalized distribution (3b) is constructed to better

exhibit a rough fit with the Wigner distribution (Fig. 1). The same procedure
is followed for the remaining two examples. Distributions corresponding to

1 5 106 are

P(s) 5
2

128
se 2 s2/128 (4a)

P(s) 5
2500 3 128

2
P(s) (4b)

whose maximum values were chosen at s 5 8, corresponding to a 5 4 (Fig.

2). Distributions corresponding to 1 5 107 are

P(s) 5
2

162
se 2 s2/162 (5a)

P(s) 5
1.8 3 104 3 162

2
P(s) (5b)

Fig. 1. Superimposed histogram of the number of primes N( D p) in the nearest neighbor spacing

D p for the first 50,000 integers, and corresponding renormalized Wigner distribution P(s)

illustrating level repulsion and a rough fit of the histogram to the distribution. In this and the

following figures, a missing star on the D p axis indicates the absence of the related D p value.
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Fig. 2. Superimposed histogram of the number of primes N( D p) in the nearest neighbor spacing

for the first 106 integers, and corresponding renormalized Wigner distribution P(s) illustrating

level repulsion and a rough fit of the histogram to the distribution.

whose maximum values were chosen at s 5 9 corresponding to a 5 4.5

(Fig. 3).

One notes that in all cases the N( D p) curves have a global maximum
at D p 5 6. In these figures the related histogram includes the value N(0) 5
0, which corresponds to the property that primes do not repeat, and the value

N(1) 5 1, which corresponds to the interval (2, 3).

In the course of this numerical study it was found that for sufficiently

large total-integer number, a finite set of nearest neighbor increments are

missing. Thus, for example, in the sampling of the first 50,000 integers,
prime numbers with nearest neighbor spacings D p 5 46, 64, 66, 68, 70

do not occur. For this value of 1, the program gives zero N( D p) for

D p . 72. In the sampling of the first 106 integers, prime numbers with

nearest neighbor spacings D p 5 94, 102, 104, 106, 108, 110 do not

occur. For this value of 1, the program gives zero N( D p) for D p . 114.

In the sampling of the first 107 integers, prime numbers with nearest
neighbor spacings D p 5 142, 144, 150 do not occur. For this value of

1, the program gives zero N( D p) for D p . 154. Readouts strongly suggest

that as the total number of integers increases, nearest neighbor vacancies

corresponding to smaller 1 values vanish and new, larger value vacancies
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Fig. 3. Superimposed histogram of the number of primes N( D p) in the nearest neighbor spacing

for the first 107 integers, and corresponding renormalized Wigner distribution P(s) illustrating

level repulsion and a rough fit of the histogram to the distribution. In this figure the maximum

value of N( D p) at D p 5 6 has the value 105.

appear. In addition, early values of these curves illustrate a rough oscillatory

behavior of N( D p) with periodicity d [ D p] . 6.

2.2. Prime-Number Theorems

Here we give some well-known theorems regarding prime numbers

(Niven and Zuckertman, 1990; Ore, 1948; Ellison, 1985; Kraitchik, 1992,
1926; Heath-Brown, 1988) related to the present work.

A. There are arbitrarily large gaps in the series of primes.

B. Lejeune±Dirichlet theorem: For any positive integer pair (a, b) with

GCD 5 1, there exists an infinite number of primes in the sequence

an 1 b (6a)

where n is a positive integer. Thus, for example, there is an infinite number

of primes in the respective sequences 3n 1 8, 5n 1 9, etc.
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C. Euler’ s formula:

z (z) 5 &
p 1 pz

pz 2 1 2 (6b)

where z (z) is the Riemann zeta function, and the product is over all primes.

D. Let P ( p) denote the number of primes # p. Then Tchebychef ’ s

inequality states that

0.921
p

ln p
# P (p) # 1.06

p

ln p
(6c)

E. The prime-number theorem states that

lim
p ® ` 1 P ( p)

p/ln p 2 5 1; P (p) , p/ln p (6d)

The right asymptotic relation is valid in the limit of large p. The prime-

number theorem also may be written (after Gauss)

lim
p ® ` 1 Li( p)

p/ln p 2 5 1; Li( p) [ #
p

2

dy

ln y
(6e)

The latter relations indicate that primes grow sparse as p increases. Thus,

for example, at p[107], P 8( p) . 0.062, (where p[x] denotes the prime closest

to x). This prime diminishment property was demonstrated in extensive

numerical studies by Kraitchik (1922, 1926). The latter observation, as well
as property 1 related to gaps in the prime-number sequence, are consistent

with the incremental distribution of primes discussed herein. Properties of

increments of consecutive primes is discussed by Heath-Brown (1988).

2.3. Riemann Zeta Function

With (6b) we see that zeros of the Riemann zeta function are functions

of the prime numbers. Consequently, with the present interpretation, one
may infer that these zeros likewise comprise a quasi-chaotic sequence. This

interpretation is in accord with the observation that the distribution of spacings

of zeros of the zeta function conforms roughly with a GUE which, as noted

above, relate to Hermitian matrices (Berry, 1988; Berry, 1986). This property

is consistent with present findings in the following manner. The complex

counterparts of real, symmetric matrices related to the prime-number system
are Hermitian matrices related to the complex system of zeros of the Riemann

zeta function. In addition, as noted above, both prime numbers and zeros of

the zeta function have been associated with the spectra of excited nuclei

(Cipra, 1996).
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3. SUMMARY

We have viewed the sequence of prime numbers as the spectrum of

eigenvalues of random 2 3 2 matrices. The spectral statistics of the prime-

number sequence for the first 5 3 104, 106, and 107 integers were examined,

respectively. In each case, a histogram of the number of prime numbers

in adjacent prime-number intervals was found to be roughly Wigner-like,
illustrating level repulsion and relating to real, symmetric matrices. However,

it was noted that although the curves imply level repulsion, in the domain

of large prime-number increments, the Wigner distribution falls off more

rapidly than does the corresponding incremental prime-number histogram.

Accordingly, these results were interpreted to imply a quasi-chaotic property

of the prime-number sequence. In each of these readings, nearest neighbor
spacing D p 5 6 was found to be a global maximum. A rule for missing

spacings was inferred according to which, as the maximum number of integers

1 increases, nearest neighbor vacancies corresponding to smaller 1 vanish

and new, larger value vacancies appear. In addition, early values of these

curves illustrate a rough oscillatory behavior of N( D p) with periodicity

d [ D p] . 6. A corollary to these findings implies that zeros of the Riemann
zeta function likewise comprise a quasi-chaotic sequence. The quasi-chaotic

property of the prime-number sequence as well as the relative fluctuations

of N( D p) with varying 1 support the conjecture that a general formula for

the nth prime does not exist. Application of this study to the spectra of excited

nuclei was noted.
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